1、空间自回归模型(SAR)
Stata适合空间自回归 (SAR) 模型, 也称为同步自回归模型。新的spregress,spivregress, 和spxtregress命令允许因变量的空间滞后、自变量的空间滞后和空间自回归误差。空间滞后是时间序列滞后的空间模拟。时间序列滞后近年来成为变量值。空间滞后是附近地区的值。
2、潜在类别分析(LCA)
潜在的均值未被观测。分类也就是分组。潜在类是数据中未观测到的组。你可能有关于消费者的数据,并且根据消费者对产品的潜在兴趣将他们分成三组。但是,在数据中没有指定每个消费者所属组的变量。拟合模型后,你可以
使用新的estat lcprob命令估计属于每一类的消费者比例;
使用新的estat lcprob命令估计每个类中Y1、Y2、Y3、Y4的边际均值(均值就是示例所示的概率);
使用新estat lcprob命令来评价适合度;
使用现有的predict命令获取分类成员的预测概率和观测结果变量的预测值。
3、贝叶斯前缀指令
新的bayes:前缀命令使你能够适应比以前版本更广泛的贝叶斯模型。原来也可以拟合贝叶斯线性回归, 但是现在可以通过输入文字就可以:在这个模型中, 为变量 id的每个值添加随机截距。
新的bayes:前缀命令在许多Stata评估命令之前工作,并提供超过50种可能性的模型。支持的模型包括多级、面板数据、生存和样本选择模型!
新命令支持所有Stata的贝叶斯的功能。你可以从之前的模型参数的分布中选择,也可以使用之前默认的。当闭合形式解决方案用于Gibbs方法时,可以使用默认的自适应 Metropolis�CHastings 抽样, 或Gibbs抽样, 或两种方法的组合。在bayesmh命令的基础上可以使用STATA的任何其他功能。可以更改回归系数的缺省先验分布,比如,使用prior()选项:
4、线性动态随机一般均衡(DSGE)模型
DSGEs是经济学中的一个时间序列模型。它们是传统预测模型的替代品。两者都试图解释总的经济现象, 但 DSGEs 允许对来自经济理论模型的基础上做这个。建立在经济理论基础上的方程很多。这些方程的关键特征是, 未来变量的期望值会影响今天的变量。这是区别 DSGEs 与矢量回归或状态空间模型的一个特性。另一个特点是, 从理论推导出来的参数通常可以用这个理论来解释。
在DSGE模型中有三种变量:
控制变量和方程,如p没有冲击,并且是由方程组决定的。
状态变量 (如 y) 具有隐含的冲击, 在时间段开始时是预先确定的。
冲击是驱动系统的随机错误。
在任何情况下, 以上dsge 命令可以定义一个模型并拟合。
如果我们有一个关于 beta 和kappa之间关系的理论, 比如它们是相等的, 我们可以用现有的命令test来测试它。
新的 postestimation命令estat policy和estat transition报告策略和转换矩阵。如果键入
显示将控制变量作为状态变量的线性函数。如果有五个控制变量和三个状态变量, 则每个控件将被报告为三个状态的线性函数。在上面的简单例子中, 预测 p 的线性函数将显示为现在的 y 函数。
同时,报告转换矩阵。而策略矩阵将 p 报告为函数y, 而转换矩阵则报告 y 如何通过时间演变为p。可以使用Stata的现有预测命令来生成预测。可以使用Stata现有的irf命令来绘制脉冲响应函数。
5、web动态的Markdown文档
你有没有听过Markdown?它是一种创建 html 文档的流行方式。html 文件是繁琐的。Markdown简单直观,想法很简单。可以创建一个文件, 其中包含所需的可读格式的文本, 然后通过它运行一个命令来创建一个HTML文件。
Stata现在支持Markdown, 我们已经添加了标签 (功能) 到Markdown, 允许包括输入文件中的Stata命令。你所包含的命令将被运行和显示, 或者以秘密方式运行, 以及提取输出的部分供文档使用。
6、非线性混合效应模型
非线性混合效应模型也被称为非线性多级模型和非线性层次模型。可以用两种方式来考虑这些模型。可以把它们看成包含随机效应的非线性模型。或者可以把它们看成线性混合效应模型, 其中一些或所有的固定和随机效应都是非线性的。不管哪种方式, 总的误差分布假设成Gaussian分布。
这些模型在人口药代动力学, 生物鉴定和研究生物学和农业成长过程中很流行。比如,采用非线性混合效应模型对机体的药物吸收、地震强度和植物生长进行了模拟。
新的评估命令被命名为 menl。它实现了 popular-in-practice Lindstrom�CBates 算法, 是基于对固定和随机效应的非线性均值函数进行线性化。支持最大似然和受限最大似然估计方法。
Menl易于使用。可以直接输入单个方程。大括号{ },用于将要匹配的参数括起来:
除了标准功能外, postestimation特征还包括对随机效应及其标准误差的预测,对模型中定义的感兴趣参数的预测, 作为其他模型参数和随机效应的参数、聚类相关矩阵的整体评估等。